
R. Meersman and Z. Tari (Eds.): CoopIS/DOA/ODBASE 2005, LNCS 3761, pp. 1483 – 1499, 2005.
© Springer-Verlag Berlin Heidelberg 2005

Security Ontology for Annotating Resources

Anya Kim, Jim Luo, and Myong Kang

Center for High Assurance Computer Systems,
Naval Research Laboratory, Washington, DC 20375
{kim, luo, mkang}@itd.nrl.navy.mil

Abstract. Annotation with security-related metadata enables discovery of
resources that meet security requirements. This paper presents the NRL
Security Ontology, which complements existing ontologies in other domains
that focus on annotation of functional aspects of resources. Types of security
information that could be described include mechanisms, protocols, objectives,
algorithms, and credentials in various levels of detail and specificity. The NRL
Security Ontology is more comprehensive and better organized than existing
security ontologies. It is capable of representing more types of security
statements and can be applied to any electronic resource. The class hierarchy of
the ontology makes it both easy to use and intuitive to extend. We applied this
ontology to a Service Oriented Architecture to annotate security aspects of Web
service descriptions and queries. A refined matching algorithm was developed
to perform requirement-capability matchmaking that takes into account not only
the ontology concepts, but also the properties of the concepts.

1 Introduction

In today’s network-centric computing environment, automatic discovery of resources
and the ability to share information and services across different domains are important
capabilities [1]. The first step in providing these capabilities is to markup these
resources with various metadata in a well-understood and consistent manner. Such
annotation will enable resources to be machine-readable and machine-understandable.

Using metadata to find distributed resources that meet one’s functional
requirements is only the first step. Resource requestors may have additional
requirements such as security, survivability, or quality of service (QoS) specifications.
For example, they may require resources to possess a certain military classification
level, to originate from trusted sources, or to be handled according to a specified
privacy policy. Therefore, resources need to be sufficiently annotated with security-
related metadata so that they can be correctly discovered, compared, and invoked
according to security as well as functional requirements of the requestor.

In this paper, we introduce a set of security-related ontologies collectively referred
to as the NRL Security Ontology. The NRL Security Ontology provides the ability for
precisely describing security concepts at various levels of detail. This ontology
complements existing ontologies that mainly focus on functional aspects of capability,
content, and parameters. Marking up security aspects of resources is a crucial step
toward deploying a secure Service Oriented Architecture (SOA) system.

green
Text Box
NRL Release Number 05-1226-0470

1484 A. Kim, J. Luo, and M. Kang

Other groups have recognized the need for security annotation of services and
proposed a set of security-related ontologies [2-4]. However, these ontologies possess
certain limitations discussed in Section 2. The NRL Security Ontology was created to
address these limitations. We expect this work to serve as a catalyst in the
development of standardized security-related ontologies with contributions from both
the security community and the semantic Web community.

The rest of the paper is organized as follows. Section 2 examines previous work in
security ontology and discusses the need for improvements. Section 3 presents the
NRL security ontology, including design objectives, domain and scope, and detailed
descriptions. Section 4 gives examples of how to use these ontologies to annotate and
query for resources particularly in a Web service context. It also discusses our
algorithm for matchmaking between queries and resource descriptions. Section 5
presents future work and our conclusion.

2 Existing Security-Related Ontologies

Realization of the need for security ontologies is not new. Denker et al. have created
several ontologies for specifying security-related information in Web services [2] using
Daml+OIL [5] and later OWL [6]. We refer to this set of ontologies as the DAML
Security Ontology for the rest of the paper. The authors state that the goal of these
ontologies is to enable high-level markup of Web resources, services, and agents, while
providing a layer of abstraction on top of various Web service security standards such as
XML-Enc [7], XML-Dsig [8], and SAML (Security Assertion Markup Language) [9].

Of the set of ontologies that make up the DAML security ontology, the two main
ontologies are the Security Mechanisms ontology and the Credential ontology. They
describe security mechanisms and authentication credentials respectively. While we
realize that these ontologies are works-in-progress and provide a great foundation for
describing security-related concepts, we found two issues with them. First, they are
not intuitive to understand especially in terms of the organization of subclass
relationships. Second, they cannot express all the security information that we want to
describe or be easily extended to do so.

The intuitiveness issue is particularly true for the main Security Mechanisms
ontology. Figure 1 depicts this ontology in a simplified form where circles denote
classes, solid lines represent instances of the classes and dotted lines represent
properties1. The top class in this ontology is ‘SecurityMechanism’ with subclasses of
‘SecurityNotation’, ‘Signature’, ‘Protocol’, ‘KeyFormat’, ‘Encryption’, and ‘Syntax’.
Making these unrelated concepts sibling classes does not make sense from either a
security perspective or an ontology perspective. Furthermore, some instances are not
properly assigned to the correct subclass. For example, Kerberos and SSH are both
declared as instances of ‘KeyProtocol’, however these are not key protocols.
Additionally, all properties are defined for the top class. However, those properties do
not apply to most of the subclasses. For example, no instance under the ‘Syntax’
subclass would have a need for the relSecNotation (Relative Security Notation), enc
(Encryption), sig (Signature), or reqCredential (Required Credential) properties, yet
they are all inherited because these properties are defined at the top class.

1 Some complex concepts they use such as restriction classes are not depicted here.

 Security Ontology for Annotating Resources 1485

Security
Mechanism

SecurityNotation Signature Keyformat EncryptionProtocol Syntax

Key
Protocol

DataTransfer
Protocol

KeyRegistration
Protocol

KeyInformation
Protocol

Authentication

Authorization

AccessControl

DataIntegrity

Confidentiality

Privacy

ExposureControl

Anonymity

Negotiation

Policy

PolicyLanguage

KeyDistribution

documentation (range:&Bibtex_entry)

syntax (range: Syntax)

relSecNotation (range: SecurityNotation)

enc (range: Encryption)

sig (range: Signature)

reqCredentials (&ComposedCredential)

(properties)

ASCII

DAMLOIL

OWL

DER

XML

Binary

Radix-64_ASCII

ASN.1

MIME

XML_DigSig

SMIME_DigSig

OPENPGP_DigSig XML_Enc

OPENPGP_Enc

SMIME_Enc

SAML
X.509

Kerberos
OPENPGP
SSH
XKISS

HTTP
SOAP

X_KISSX_KRSS

Fig. 1. Simplified DAML Security Mechanisms Ontology

The second issue we mentioned is the lack of expressiveness. The DAML security
ontology includes many classes and instances that are not directly relevant for
security annotation while lacking others that are necessary. For example, syntax and
data transfer protocols are useful concepts in another domain, but are not particularly
relevant for describing security-related information. Furthermore, the only encryption
instances defined in the ontology are S/MIME, OpenPGP, and XML encryption. We
do realize that more instances could be added as the need arises. However, the
organization of the class hierarchy should be well developed. For example, there
should be classes to represent military as well as commercial security devices and
security policies. Currently, there is no appropriate place in the DAML Security
Ontology to create a firewall or military security policy instance. There is also a lack
of appropriately placed properties that could allow for more detailed refinement of
security concepts. For example, it would be useful to define the algorithms supported
by a protocol, or the certification status of a mechanism.

Although the authors of the DAML Security Ontology did a great job in
recognizing the need for security ontologies and beginning work in security
ontologies, we feel that there is still room for improvement. The next section
describes the NRL Security Ontology in detail.

3 NRL Security Ontology

The DAML Security Ontology focuses on annotation of Web services rather than
resources in general. This is evident not only from their documentation [2], but also

1486 A. Kim, J. Luo, and M. Kang

by examining the types of classes and instances in the ontology. We want ontologies
that can be used to annotate generic resources from simple documents to interactive
services with security-related metadata. We also want to improve upon the limitations
of the DAML Security Ontology outlined in the previous section. The NRL Security
Ontology was designed with the following objectives in mind:

1. Describe security related information applicable to all types of resources
2. Provide the ability to annotate security related information in various levels

of detail for various environments (both commercial and military)
3. Create ontologies that are easy to extend and provide reusability
4. Facilitate mapping of higher-level (mission-level) security requirements to

lower-level (resource-level) capabilities

3.1 Domain and Scope of the Ontology

When creating an ontology, one of the most important factors is the domain and scope
in which it will be used [10]. While our objectives outlined above are a good starting
point, in order to create ontologies that will be truly useful, we need to understand the
types of questions that the ontology will be expected to answer.

These ontologies will be used by both the resource provider and the requestor to
express their security requirements and capabilities. We must consider the various ways
that the same statement can be expressed. Furthermore, we need to consider statements
that are unlikely in order to limit the scope of the ontology. Statements that are either
too broad or too specific are unlikely to be used and provide no useful information.

Noy et al. [10] state that one of the best ways to determine the scope of the
ontology is to list a set of competency questions that can be answered using the
ontology. For our purposes we did the same by composing a list of security
requirements and capabilities for both the resource requestor and the provider. From
the requestor’s perspective, security requirements can be stated in terms of specific
mechanisms or in terms of abstract security objectives. From the resource provider’s
perspective, security requirements are similar to the notion of policy and can express
concepts such as authentication and access control. The provider’s capabilities include
protocols and mechanisms that the provider possesses and security policies it adheres
to. The actual list of the requirements and capabilities statements we created can be
found in the extended version of this paper [11].

3.2 Organizational Structure of NRL Security Ontology

We chose OWL to create our ontologies because it provides a rich vocabulary for
describing classes and properties [6, 12]. It is widely used in many communities that
have begun to develop ontologies of their own knowledge domains [13].

There are seven separate ontologies that make up the NRL Security Ontology:

1. Main Security ontology: an ontology to describe security concepts
2. Credentials ontology: an ontology to specify authentication credentials
3. Security Algorithms ontology: an ontology to describe various security algorithms
4. Security Assurance ontology: an ontology to specify different assurance standards
5. Service Security ontology: an ontology to facilitate security annotation of semantic

Web services

 Security Ontology for Annotating Resources 1487

6. Agent Security ontology: an ontology to enable querying of security information
7. Information Object ontology: an ontology to describe security of input and output

parameters of Web services

The Service Security, Agent Security, and Information Object ontologies are based
on some existing DAML Security ontologies while the others are new. The
Credentials, Security Algorithms, and Security Assurance ontologies provide values
for properties defined for concepts in the Main Security ontology. They enable those
concepts to be described in more detail with respect to types of credentials used,
supported algorithms, and associated levels of assurance. The Service Security
ontology provides the means to use security concepts from the Main Security
ontology in the Web services framework. The Agent Service ontology enables
creation of security-related queries using security concepts from the Main Security
ontology. The Information Object ontology allows for annotation of Web service
inputs and outputs using the Security Algorithms ontology. The relationship among
these ontologies is represented in Figure 2. The ontology depicted in gray represents
OWL-S, a set of core ontologies used to describe Web services.

Main Security
Ontology

Credentials
Ontology

Security
Algorithms
Ontology

Property to specify
type of credential

Property to specify
security algorithm

Information
Object
Ontology

Link to OWL-S
Ontology by
subclass

Service
Security
Ontology

Link to OWL-S
Ontology by
subclass

Property to specify
security algorithms

Security
Assurance
Ontology

Property to specify
assurance level

Agent
Security
Ontology

Allows for
querying

Property to specify
assurance level

OWL-S
Ontology
OWL-S
Ontology

Property to specify
security concepts as
requirements and
capabilities

Property to specify security
concepts as requirements
and capabilities

Fig. 2. Graphical Representation of Security-Related Ontologies and Their Relationships

1488 A. Kim, J. Luo, and M. Kang

Next, we present a brief explanation of classes, properties and relationships in each
ontology. Due to space limitations we do not show all ontologies here. A complete
graphical depiction of these ontologies and the OWL files can be found in [11].

Main Security Ontology (securityMain.owl). The core ontology in the NRL
security ontology set is the Main Security ontology (Figure 3). It imports the
Credentials ontology, Security Algorithms ontology, and Security Assurance ontology
as object properties. The top class, ‘SecurityConcept’ possesses three subclasses:
‘SecurityProtocol’, ‘SecurityMechanism’ and ‘SecurityPolicy’.

While some may argue that the distinction between security protocols and security
mechanisms is blurred, we define security protocols as an agreed upon series of steps
to accomplish a task while security mechanisms are implementations of protocols
[14]. We specifically differentiate them here to provide the ability to describe security
in both manners. Security policies are the set of rules that regulate how information is
protected and secured .

SecurityConceptSecurityObjective

SecurityPolicySecurityMechanism

Confidentiality

UserAuthentication

MessageIntegrity

Availability

Authorization

Trust

HostTrust

SecurityProtocol

CommercialPolicy MilitaryPolicy

BLPClarkWilson

ChineseWall

supportsSecurityObjective
Range:SecurityObjective class (multiple)

HostMechanism NetworkMechanism
Application
Mechanism

RBAC

Safehost VPN

MLSPump

OnionRouter

ReplayPrevention

Restriction Class
{supportsSecurityObjective
= “Authorization”}

KeyManagement

MessageAuthentication

CovertChannelPrevention

hasAlgorithm
Range: &SecurityAlgorithms;
Algorithm

Separation
ServiceMechanism

hasAssurance
Range: &SecurityAssurance;
Assurance

SoapFirewall
VMM

hasAssurance
Range: &SecurityAssurance;
Assurance

TrafficHiding

reqCredential
Range: &Credentials;SimpleCredential

Anonymity

Fig. 3. A Part of the Main Security Ontology

The Main Security ontology also has a separate class called ‘SecurityObjective’ that
enables users to specify security objectives for the ‘SecurityConcept’ class using the
suppotsSecurityObjective property. For example, IPSec is declared to have
Confidentiality, MessageAuthentication, and TrafficHiding as its
supportsSecurityObjective property values. Security objectives also enable users to
search for protocols, mechanisms, or policies based on the security objective they
require. For example, users can query, “find all instances that provide confidentiality”
and receive a list of all the security concepts that have a value of Confidentiality in
their supportsSecurityObjective property.

 Security Ontology for Annotating Resources 1489

Another way we can use ‘SecurityObjective’ is to map high-level mission
requirements to low-level service requirements. For instance, assume that a security
requirement is specified at the mission level such that Mission 1 and Mission 2 must
have separation between them. At this level, the mission planner can use the ontology
to specify the security objective of Separation. The mission designer can then search
for instances in the ‘SecurityConcept’ class that provide Separation. In this case, the
only one that does is VPN, so he can select VPN as a security requirement at the
service level.

Credentials Ontology (credentials.owl). Authentication is one of the most
fundamental security requirements in a networked environment. The Credentials
ontology allows for specification of credentials used for authentication purposes
(Figure 4). Concepts in the Security Main ontology can refer to a specific credential
through their reqCredential property. While we adopted some of the notations in the
DAML Credential ontology, we improved upon it by reorganizing classes to be more
intuitive, including more properties and adding more classes to define additional types
of credentials. Our Credentials ontology categorizes credentials into physical token,
electronic token, and biometric token.

Credential

ElectronicToken

Debit
Card

OnetimePasswdCookiePassword Certificate

BiometricToken

Passport Badge
Drivers
License

Credit
Card

Military
ID Voice Fingerprint

X.509Certificate

name
value
path

version
serialNumber
issuer
notBefore
notAfter

RBACCertificate

role

PhysicalToken

CACCard

Smart
Card

expDate

minLength

Address

atAddress

IPAddress Domain

CryptographicKey

PrivateKey DigitalSignature

MultifactorCredential

withCredential (minCardinality=2)

MultifactorCredential

withCredential (minCardinality=2)

Fig. 4. Credentials Ontology

Under the ‘PhysicalToken’ class, we kept many of the classes from the DAML
Credential ontology under their ‘IDCard’ class. In addition, we created a class to
describe military IDs and an instance to represent CAC (Common Access Card) cards
used in the military. The ontology can be extended to add properties such as issuing
agency, expiration date, issue date, etc. Under the ‘ElectronicToken’ class, we

1490 A. Kim, J. Luo, and M. Kang

provide subclasses that enable authentication based on host address, certificates,
passwords, and cryptographic keys to name a few. Additional properties were added
to describe certificates including the issuer, version and serial number under the
Certificate class. In order to support role-based (RBAC) certificates [15], an
‘RBACCertificate’ class was created as a subclass of the Certificate class with a role
property. The ‘BiometricToken’ class represents credentials that pertain to human
traits. For now, only ‘Voice’ and ‘Fingerprint’ subclasses are defined here.

In addition to the three categories of simple credentials, the ‘MultifactorCredential”
class can be used to describe composed credentials made up of two or more individual
credentials. For example, it can describe requirements where both a smart card as
well as a password is needed.

Security Algorithms Ontology (securityAlgorithms.owl). The Security Algorithms
ontology was created to enable description of various security algorithms (Figure 5).

EncryptionAlgorithm

Algorithm

SignatureAlgorithmKeyExchangeAlgorithm

SymmetricAlgorithm AsymmetricAlgorithm

DES (keylength = 64)

AES

Blowfish

TripleDES (hasNSALevel = &assurance;type3)

RSA

ECC

HashAlgorithm MACAlgorithm

SHA-1

MD4

Diffie_Hellman
Oakley

modeofOperation

CAST

keyLength

ChecksumAlgorithm

isNISTStandard

hasNSALevel

CRC-16

CRC-8

CRC-32
KEA

RIPEMD

MD5

HMAC

SHA-256 CBC-MAC

Skipjack (hasNSALevel = &assurance;type2)

CRAYON (hasNSALevel = &assurance;type1)

Fig. 5. Security Algorithms Ontology

Security Assurance Ontology (securityAssurance.owl). The Security Assurance
ontology provides a way to describe standardized assurance methods for security
protocols, mechanisms, and algorithms. They can be described in terms of their
assurance level using the hasAssurance property from the Main Security ontology.
The ‘Assurance’ class is classified according to different assurance methods:
‘Standard’, ‘Accreditation’, ‘Evaluation’, and ‘Certification’. This ontology is the
least compete of all our ontologies. However, we have added classes to describe the
Common Criteria and TCSEC evaluations, and the FIPS and NSA standards [16].

 Security Ontology for Annotating Resources 1491

Service Security and Agent Security Ontologies (serviceSecurity.owl and
agentSecurity.owl). OWL-S [17] is an OWL-based semantic markup description
language that provides a core set of constructs for describing Web services specifically.
It provides a set of ontologies called Profile, Process, and Grounding to describe Web
services. The Profile describes services in terms of what the service does, the Process
describes how to use it, and the Grounding specifies how to interact with it.

&profile:ServiceParameter

&SecurityMain;SecurityConcept

securityRequirement (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)

securityCapability (range: &SecurityMain;SecurityConcept or &SecurityMain;SecurityObjective)

&SecurityMain;SecurityObjective

&profile;Profile

serviceParameter (range: ServiceParameter)

Fig. 6. Service Security Ontology

In order for the NRL Security Ontology to be used in the Web service context, a link
must be made to the OWL-S ontologies. The Service Security ontology was developed
for such a purpose. In the Service Security Ontology, ‘SecurityConcept’ and
‘SecurityObjective’ from the Main Security ontology are defined to be subclasses of the
‘ServiceParameter’ class in the OWL-S Profile ontology (Figure 6). The OWL-S Profile
also contains a serviceParameter property that can have ServiceParameter as its value2.
Declaring two subproperties of the serviceParameter property, securityRequirement and
securityCapability enables the OWL-S Profile to include security requirements and
security capabilities in its service description. Furthermore, we defined the range for
these subproperties as either the ‘SecurityConcept’ or ‘SecurityObjective’ classes. This
allows security requirements and capabilities to be stated in terms of either a particular
security objective, or a specific security mechanism.

The Agent Security ontology allows for querying of resources, in particular Web
services with requestor requirements and capabilities. It defines an ‘Agent’ class to
represent the service requestor with the properties securityCapability and
securityRequirement that can hold values from the ‘SecurityConcept’ and
‘SecurityObjective’ classes.

Information Object Ontology (InfObj.owl). The Information Object ontology is
based on a DAML ontology created to capture encrypted or signed input/output data

2 Note that the OWL-S Profile ontology has a property and class of the same name, service

parameter. However, the property starts with a lowercase letter, while the class starts with an
uppercase letter. Thus, serviceParameter refers to a property while ServiceParameter refers to
a class.

1492 A. Kim, J. Luo, and M. Kang

of Web services. It has an ‘InfObj’ class and two subclasses, ‘EncInfObj’ (Encrypted
Information Object) and ‘SigInfObj’ (Signed Information Object). The ‘InfObj’ class
is used as the range for input and output parameters of services described with OWL-
S. The ontology has the cryptoAlgUsed property to specify the algorithm used to
encrypt or sign the object. In the original DAML ontology, the cryptoAlgUsed
property pointed to a set of algorithms defined within the DAML Information Object
ontology. However, we felt that the two concepts of information object and security
algorithms were so dissimilar that they did not belong within the same ontology file.
Hence, in the NRL Information Object ontology, the cryptoAlgUsed property points
to classes in the Security Algorithms ontology.

3.3 Design Objectives Revisited

At the beginning of Section 3 we outlined a set of objectives expected to be achieved
by the NRL Security Ontology. This subsection discusses whether those design
objectives were met and to what degree.

1. Describe security related information not only for Web services, but for all
types of resources: The NRL Security Ontology enables us to describe security
information of various types of resources. We can describe security protocols that
are specific to Web services such as XML-enc and SAML, but also include many
protocols and mechanisms such as IPSec, Kerberos and SSH that are generally
applied to any resource.

2. Provide the ability to annotate security related information in various levels of
detail for various environments: The ontology can provide specific details of
security mechanisms through properties such as the types of algorithms supported,
required key length, types of credentials used, and expiration dates. Classes and
instances were created that enable description of resources relevant to a military
environment as well as for commercial use.

3. Create ontologies that are easy to extend and provide reusability: The
ontologies are created with a class hierarchy that makes sense from a security
perspective. New instances when necessary can be added to the ontology in an
intuitive manner with out having to alter the class hierarchy.

4. Facilitate mapping of higher-level (mission-level) security requirements to
lower-level (resource-level) capabilities using the ontology: resources can be
described in terms of either security objectives at the abstract level, or security
concepts at the concrete level. A mapping was established so that moving between
the two methods of specification is possible.

In the next section, we will provide some examples of how to apply these
ontologies to annotate resources with security information.

4 Application of NRL Security Ontology to a Service Oriented
Architecture

While the NRL Security Ontology can be used to describe security-related
information of resources in general, in this section we discuss how to annotate Web
services in a Service Oriented Architecture. In particular, we focus on:

 Security Ontology for Annotating Resources 1493

• How to annotate Web service descriptions with security requirements and
capabilities

• How to create queries for finding Web services with given security requirements
and capabilities

• How to perform matchmaking between queries and service descriptions in the
SOA context.

4.1 Reasoning and Matching Algorithm

We have stated that both resource requestors and providers have security requirements
and capabilities. Matchmaking looks for a two-way correspondence between these
requirements and capabilities. In other words, service requirements are compared to
requestor capabilities and service capabilities are compared to requestor requirements.
In order for a match of security concepts to occur between a service provider and a
service requestor, two conditions should be met. First, the provider’s security
capabilities should satisfy the requestor’s security requirements. Second, the provider’s
security requirements should be satisfied by the requestor’s security capabilities. This
implies that the requirements should subsume the capabilities (Table 1).

Table 1. The Matching between Requestor and Provider Requirements and Capabilities

Requestor Provider
Requirements ⊆ Capabilities
Capabilities ⊇ Requirements

Every single requestor requirement must have a corresponding capability on the
provider side to satisfy it, and vice versa. Hence the matchmaker must be able to
perform two tasks. First, it must be able to determine the level of match for each
specific requirement and a specific capability. Second, it must use those levels of
match to determine if the set of requirements is matched by the set of capabilities. In
other words, the matchmaker must determine the level at which each requirement is
matched to a capability, and then the overall level of match between the requester and
the provider. This will be explained in detail later in the section.

Several semantic matching algorithms have been proposed [2, 18, 19]. Two of these
[18, 19] support only one-way matching of functional service descriptions to
requestor queries as opposed to requirement-capability matching. They do not need to
consider two-way matching since their focus is on matching functional aspects; when
discussing purely functional requirements there is no functional requirement from the
provider-side and no functional capabilities on the requestor-side. The third proposed
matchmaking algorithm [2] performs requirement-capability matching for both sides.
However, it does not take into account property attributes. Consequently, it will not
support cases where both the requirement and capability point to the same concept but
the concepts are annotated with different properties. For example, the requestor and
provider may both use SSH (stated as a requirement on one side and a capability on
the other), but if the requestor requires SSH using TripleDES and the provider is only
capable of SSH with AES then these two should not match. Our matchmaker will
perform requirement-capability matching, taking into account property annotations.

1494 A. Kim, J. Luo, and M. Kang

Specifically, when describing security information of resources, the ability to
include properties in the matching algorithm is very important. This is due to the fact
that security information, more so than functionality-related information can require
detailed descriptions that make extensive use of properties. Complex statements can
be made with multiple layers of properties. For example, there could be a security
requirement that requires the use of XML-enc (securityRequirement property) with a
symmetric encryption algorithm (hasAlgorithm property) that has been declared a
type 3 algorithm from the NSA (hasNSALevel property).

For the first task of the matchmaker, there are four possible levels of match for each
requirement-capability pair: perfect match, close match, possible match, and no match
in decreasing order of matching.

Perfect Match cases. Perfect matches occur when both one’s capability and the
other’s requirement point to the same concept. The same concept can mean the exact
same concept, or two concepts declared as equivalent in the ontology. There are two
ways this can occur:

• Case 1. Both the requirement and capability specify the exact same ontology
concept. The instances and property values specified by both sides are identical.
This is the trivial case. For example, if a requestor query states that it requires the
service to possess a VPN (Virtual Private Network) that possesses a Common
Criteria EAL4 rating and a service describes its capability as possessing a VPN
with a Common Criteria rating of EAL 4 then these two are a perfect match.

• Case 2. The requirement and capability refer to equivalent concepts, and if
properties are specified, the properties are identical or equivalent. For example, a
requestor’s requirement specifies SSL and the provider’s capability is listed as
TLS. In the Main Security ontology, these two concepts are listed as equivalent
classes; hence they are identical and will produce a perfect match. We sometimes
call this an equivalence match to differentiate from the first case.

Close Match cases. A close match occurs when one’s requirement is more general (i.e.,
described in less detail) than the other’s capability. There are three ways this can occur:

• Case 1. The requirement specifies a more general concept at a higher level in the
ontological hierarchy. For example, the requestor’s capability is stated as DES
while the provider’s requirement asks for a symmetric encryption algorithm. DES
is an instance of the ‘SymmetricAlgorithm’ class and thus lower in the hierarchy.
We assume that the provider specified its requirement as a higher level concept
because it does not care which specific algorithm is used as long as it is a
symmetric encryption algorithm. Therefore, we can assume a match.

• Case 2. The requirement and capability have the same concept, but the capability is
specified in more detail (i.e., property). For example, the requestor’s capability is
specified as AES with 256 bit keys while the provider’s requirement asks for AES
(with no properties). AES with 256 bit keys is a more specific instance of AES so
we can assume that there is a match.

• Case 3. The requirement is stated in terms of a security objective while the
capability is stated in terms of a security concept that supports that specific
objective. For example, the requestor’s requirement is stated as the objective of

 Security Ontology for Annotating Resources 1495

Confidentiality and the provider’s capability is given as XML-Enc which has the
supportsSecurityObjective value of Confidentiality. Since the requirement is
looking for anything that supports Confidentiality and XML-Enc does support it,
we view this as a match.

Possible Match cases. A possible match occurs when one’s requirement is more
specific (i.e., defined in more detail) than the other’s capability. This is the opposite
of a close match. A possible match does not rule out the possibility of a match, but the
information available cannot ensure the capability can match the requirement. There
are three ways this can occur:

• Case 1. The requirement specifies a more specific concept (lower in the
hierarchy). For example, the requestor’s capability is stated as symmetric
encryption algorithm while the provider’s requirement asks for DES. The
symmetric encryption algorithm that the requestor is capable of could be DES, but
it is not certain. Therefore, it is only a partial match.

• Case 2. The requirement and capability refer to the same concept, but the
requirement specifies a more refined concept (i.e. property). For example, the
capability is stated as AES while the requirement asks for AES with 256-bit keys.
The AES specified in the capability could be possible of 256-bit key encryption,
but it is not certain. Therefore, it is only a partial match.

• Case 3. The requirement is stated in terms of a security concept while the capability
is stated in terms of a security objective that is supported by the security concept. For
example, the requestor’s requirement is stated as confidentiality while the provider’s
capability is stated as XML-Enc which supports confidentiality. The requestor may
be capable of using XML-Enc, but it is not certain. All we can deduce is that the
requestor is capable of confidentiality. Therefore, it is only a partial match.

No Match cases. No match occurs when one’s capability and the other’s requirement
are disparate without the possibility of matching. There are two ways this can occur:

• Case 1. The requirement and capability point to two unrelated concepts. For
example, the requirement states it requires DES and the capability states its
capability as RSA. These concepts have no hierarchical relationship to each other
and so are unrelated. There can be no match.

• Case 2. The requirement and capability point to the same concept but have
different specifics (i.e. properties) with respect to that concept. For example, the
requirement points to AES in CBC mode while the capability states AES in CFB
mode. The capability and requirement can both use AES, but they require modes of
operation; one is a block cipher the other is a stream cipher so they are not
compatible.

For the second task of the matchmaker, it must attempt to match every requirement
on one side against every capability on the other side. The degree of match for a
single requirement is its highest level of match it has against all of the possible
capabilities. The overall level of match between the requester and the provider is the
same as the lowest degree of match of any of the requirement-capability pairs. There
are four possibilities:

1496 A. Kim, J. Luo, and M. Kang

• If at least one of the requirements is not matched, then the requestor is not matched
to the provider. The requestor will not be able to use the resource.

• If all the requirement-capability pairs are at least possible matches, then there is a
possible match between the requester and the provider. This means there is not
enough information to determine one way or the other whether the requester can
use the resource. Additional information or negotiation will be needed to make that
determination.

• If all the requirement-capability pairs are at least close matches, then the requestor
can indeed use the resource.

• If all the requirement-capability pairs are perfect matches, then obviously the
requestor can use the resource.

In the following section, we will provide an example of the matching process
between a service description and a query.

4.2 Application of the Matching Algorithm

In this section we examine how to actually describe services and create queries using
the security ontologies, and how to find services using the matching algorithm. In our
example, we have a service requestor looking for a book selling service. The service
requestor would create queries to find services that match not only the desired
functionality, but also the security capabilities and requirements of the requestor.

The following is an example of the requestor’s security capabilities and
requirements along with the part of their query that pertains to the security capability
and requirements:

Requestor’s Security Capability
1. Authentication via SAML with an X.509 Certificate signed by VeriSign
Requestor’s Security Requirement
1. Authorization
2. SSH with the DES algorithm in CBC mode

<credential:X.509Certificate rdf:ID=“X.509”>
<credential:issuer rdf:resource=”VeriSign”/>

</credential:X.509Certificate>
<securityMain:SAML rdf:ID="Capability1">

<securityMain:reqCredentials
rdf:resource="&credential;X.509"/>

</securityMain:SAML>
<securityMain:Authorization rdf:ID=”Requirement1”/>
<securityAlgorithms:DES rdf:ID= “Alg”>

<securityAlgorithms:modesOfOperation rdf:resource=”CBC”/>
</securityAlgorithms:DES>
<securityMain:SSH rdf:ID="Requirement2">

<securityMain:hasEncryptionAlgorithm
rdf:resource="&securityAlgorithms;Alg1"/>

</securityMain:SSH>
<agent:Agent rdf:about=”#BookRequest”>

<securityCapability rdf:resource=”#Capability1”/>
<securityRequirement rdf:resource=”#Requirement1”/>
<securityRequirement rdf:resource=”#Requirement2”/>

</agent>

 Security Ontology for Annotating Resources 1497

On the other hand, a book selling service would create an OWL-S profile that
includes its functional capabilities, as well as security requirements and capabilities.
The following is the example security capability and requirement statements of the
book selling service (BookSeller), along with the part of its OWL-Profile that would
contain these statements.

BookSeller’s Security Capability
1. SOAP Firewall with a Common Criteria level of EAL4
2. SSH with DES
BookSeller’s Security Requirement
1. Authenticate via SAML with an X.509 Certificate

<securityMain:SOAPFirewall rdf:ID=”Capability1”>
<securityMain:hasAssurance rdf:resource=”&assurance;EAL4”/>

</securityMain:SOAPFirewall>
<securityMain:SSH rdf:ID="Capability2">

<securityMain:hasEncryptionAlgorithm
rdf:resource="&securityAlgorithms;DES"/>

</securityMain:SSH>
<credential:X.509Certificate rdf:ID=“X.509”/>
<securityMain:SAML rdf:ID="Requirement1">

<securityMain:reqCredentials
rdf:resource="&credential;X.509"/>

</securityMain:SAML>
<profile:Profile rdf:about=”#BookSeller1”>
<profile:serviceName>BookSeller1</profile:serviceName>
<profile:textDescription>

 This service sells all types of books
</profile:textDescription>

<securityCapability rdf:resource=”#Capability1”/>
<securityCapability rdf:resource=”#Capability2”/>
<securityRequirement rdf:resource=”#Requirement1”/>

</profile:Profile>

Given this service description and the above query, the matching algorithm would
match the requestor’s capabilities to the provider’s requirements and the requestor’s
requirements to the provider’s capabilities in the following manner (Tables 2 and 3):

Table 2. Matching Requestor’s Capabilities to Provider’s Requirements

Requestor Security Capability Provider Security Requirement Match Level
Authentication via SAML with an
X.509 Certificate signed by
VeriSign

Authentication via SAML with an
X.509 Certificate

Close Match

Table 3. Matching Requestor’s Requirements to Provider’s Capabilities

Requestor Security Requirement Provider Security Capability Match Level
Authorization SOAP Firewall with Common

Criteria level EAL4
Close Match

SSH with DES algorithm in CBC
mode

SSH with DES algorithm Possible Match

1498 A. Kim, J. Luo, and M. Kang

• In Table 2, the requestor’s capability and the provider’s requirement possess the
same concepts, but the capability has more detail. This is Case 2 of the close match
situation.

• In the first row of Table 3, the requestor’s requirement was that a service provides
Authorization. While the security objective of authorization is not explicitly stated
in the OWL-S Profile of the provider, the reasoner was able to deduce that the
SOAP Firewall supports authorization since it has a value of Authorization in its
supportsSecurityObjective property. This is Case 3 of the close match situation.

• In the second row of Table 3, the requestor has a more detailed requirement
regarding SSH than the provider has specified as its capability. This is Case 2 of
the possible match situation. This could mean that either the provider cannot
support the CBC mode of DES or it can support DES in CBC mode but decided
not to provide this additional detail.

Since the lowest level of match in the three sets of requirement-capability pairs is
possible match, the matchmaker will declare the service to be a possible match. The
requester is not certain whether it can use the service. It must obtain additional
information or negotiate with the provider to make that decision.

5 Conclusion and Future Work

Annotating resources with metadata enables them to be machine-understandable and
facilitates automatic discovery and invocation. Most work in the area thus far has
focused on annotation of resources in terms of functionality. However, security is an
important issue especially in a network-centric environment. Most resources on the
network are protected by some sort of security mechanisms. Satisfying functional
requirements alone may not guarantee access to desired resources. As a result,
annotation of resources in terms of security is just as important as annotation in terms
of functionality.

In this paper, we presented the NRL Security Ontology for making security
annotations. It is much more comprehensive than security ontologies previously
available in terms of the number of concepts, the properties of the concepts, and the
type of resources that can be described. Its organization is also more intuitive so that it
is easier to use as well as to extend. New properties and instances can be added
without modifying the overall class hierarchy. We demonstrated how the ontology can
be applied to the context of Web services in a Service Oriented Architecture to
describe security capabilities and requirements. A matchmaking algorithm was
presented to perform requirement-capability matchmaking that takes into account not
just the concepts, but also the properties of the concept. This is important because
security annotations make extensive use of property attributes. The ability to take them
into account makes this matching algorithm much more refined than previous work.

The creation of these ontologies is an iterative process. Additional instances and
properties will always be needed to express new security statements. Classes and
properties may be added and deleted as the security community continues to evaluate
and refine the security ontologies. Additional ontologies are still needed to address
issues such as privacy policies, access control, survivability, and QoS. We hope this
work will serve as a catalyst in the development of standardized security-related
ontologies with contributions from both the security community and the semantic
Web community.

 Security Ontology for Annotating Resources 1499

References

1. IA Architecture and Technical Framework (2004). Executive Summary of the End-to-End
IA Component of the GIG Integrated Architecture, National Security Agency Information
Assurance Directorate.

2. Denker, G., Kagal, L., Finin, T., Paolucci, M., and Sycara, K. (2003). Security for DAML
Web Services: Annotation and Matchmaking. In Proc. of the 2nd International Semantic
Web Conference (ISWC2003): Sanibel Island, Florida.

3. Denker, G., Nguyen, S., and Ton, A. (2004). OWL-S Semantics of Security Web Services:
a Case Study. In 1st European Semantic Web Symposium: Heraklion, Greece.

4. Kagal, L., Paolucci, M., Srinivasan, N., Denker, G., Finin, T., and Sycara, K. (2004).
Authorization and Privacy for Semantic Web Services. In AAAI Spring Symposium,
Workshop on Semantic Web Services: Stanford, California.

5. W3C (2001). DAML+OIL (March 2001) Reference Description, http://www.w3.org/
TR/daml+oil-reference.

6. W3C (2004). OWL Web Ontology Language Overview, http://www.w3.org/TR/owl-
features/.

7. IETF and W3C Working Group (2001). XML Encryption, http://www.w3c.org/
Encryption/2001.

8. IETF and W3C Working Group (2003). XML Signature, http://www.w3c.org/Signature.
9. OASIS SSTC (2005). Security Assertion Markup Language (SAML) 2.0 Technical

Overview, Working Draft, http://www.oasis-open.org/committees/download.php/12938/
sstc-saml-tech-overview-2.0-draft-06.pdf.

10. Noy, N.F., and McGuinness, D.L. (2001). Ontology Development 101: A Guide to
Creating Your First Ontology, Stanford Knowledge Systems Laboratory, KSL-01-05.

11. Kim, A., Luo, J., and Kang, M. (2005). Security Ontology for Annotating Resources. pp. 51,
Naval Research Lab, NRL Memorandum Report, NRL/MR/5540-05-641: Washington, D.C.

12. W3C Recommendation (2004). OWL Web Ontology Language Guide, vol. 2005, W3C.
13. DAML Ontology Library. http://www.daml.org/ontologies/.
14. Schneier, B. (1996). Applied Cryptography, 2nd Edition (New York: John Wiley and

Sons, Inc.).
15. Ferraiolo, D.F., Kuhn, D.R., and Chandramouli, R. (2003). Role-Based Access Control

(Norwood, MA: Artech House).
16. Committee on National Security Systems (2003). National Information Assurance (IA)

Glossary. pp. 85, http://www.cnss.gov/Assets/pdf/cnssi_4009.pdf: Ft. Meade, MD.
17. Martin, D., Burstein, M., Hobbs, J., Lassila, O., McDermott, D., McIlraith, S., Narayanan,

S., Paolucci, M., Parsia, B., Payne, T., Sirin, E., Srinivasan, N., and Sycara, K. (2003).
OWL-S: Semantic Markup for Web Services, http://www.daml.org/services/owl-
s/1.1/overview/.

18. Jaeger, M., and Tang, S. (2004). Ranked Matching for Service Descriptions using DAML-
S. In Enterprise Modelling and Ontologies for Interoperability (EMOI), INTEROP 2004:
Riga, Latvia.

19. Srinivasan, N., Paolucci, M., and Sycara, K. (2004). Adding OWL-S to UDDI,
Implementation and Throughput. In First International Workshop on Semantic Web
Services and Web Process Composition (SWSWPC 2004): San Diego, California.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

